Identification of genes in the RosR regulon of Rhizobium etli.
نویسندگان
چکیده
RosR is a determinant of nodulation competitiveness and cell surface characteristics of Rhizobium etli and has sequence similarity to a family of transcriptional repressors. To understand how RosR affects these phenotypes, we mutagenized a rosR mutant derivative of R. etli strain CE3 with a mini-Tn5 that contains a promoterless gusA gene at one end, which acts as a transcriptional reporter. Using a mass-mating technique, we introduced rosR into each mutant in trans and screened for mutants that expressed different levels of beta-glucuronidase activity in the presence and absence of rosR. A screen of 18,000 mutants identified 52 insertions in genes negatively regulated by RosR and 1 insertion in a gene positively regulated by RosR. Nucleotide sequence analysis of the regions flanking the insertions suggests that RosR regulates genes of diverse function, including those involved in polysaccharide production and in carbohydrate metabolism and those in a region containing sequence similarity to virC1 and virD3 from Agrobacterium tumefaciens. Two of the mutants produced colonies with altered morphology and were more competitive in nodulation than was CE3DeltarosR, the rosR parent. One mutant that contained an insertion in a gene with similarity to exsH of Sinorhizobium meliloti did not nodulate the plant host Phaseolus vulgaris without rosR. These results indicate that RosR directly or indirectly influences expression of diverse genes in R. etli, some of which affect the cell surface and nodulation competitiveness.
منابع مشابه
Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid.
RosR is a transcriptional regulator important for determining cell-surface characteristics and nodulation competitiveness in Rhizobium etli CE3. We identified a 15-kb region that contains genes with similarity to members of the virB, virC, virG, and virE operons of Agrobacterium tumefaciens and demonstrated that RosR directly regulates one operon in this region. These genes were located on plas...
متن کاملrosR, a determinant of nodulation competitiveness in Rhizobium etli.
We previously described a Tn5 mutant of Rhizobium etli strain CE3, designated CE3003, that is decreased in nodulation competitiveness, reduced in competitive growth in the rhizosphere, and has a hydrophobic cell surface (R. S. Araujo, E. A. Robleto, and J. Handelsman, Appl. Environ. Microbiol., 60:1430-1436, 1994). To determine the molecular basis for the mutant phenotypes, we identified a 1.2-...
متن کاملRegulatory Elements Located in the Upstream Region of the Rhizobium leguminosarum rosR Global Regulator Are Essential for Its Transcription and mRNA Stability
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains...
متن کاملConservation of plasmid-encoded traits among bean-nodulating Rhizobium species.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not onl...
متن کاملMutational analysis of the Rhizobium etli recA operator.
Based upon our earlier studies (A. Tapias, A. R. Fernández de Henestrosa, and J. Barbé, J. Bacteriol. 179:1573-1579, 1997) we hypothesized that the regulatory sequence of the Rhizobium etli recA gene was TTGN11CAA. However, further detailed analysis of the R. etli recA operator described in the present work suggests that it may in fact be GAACN7GTAC. This new conclusion is based upon PCR mutage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 182 6 شماره
صفحات -
تاریخ انتشار 2000